If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-4y-8=0
a = 2; b = -4; c = -8;
Δ = b2-4ac
Δ = -42-4·2·(-8)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{5}}{2*2}=\frac{4-4\sqrt{5}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{5}}{2*2}=\frac{4+4\sqrt{5}}{4} $
| 3p+9=48 | | -9=-1+b/8 | | 9e+4=14+18e | | 5x-26=x+50= | | -4(5+2x)=-7x-26 | | 5x×6x=4320 | | 8(p+1)=-34+2p | | -5.1-s=6.5 | | 1-4x=13+8x | | x(x+2)+3(x+1)=11 | | -5y/3=-10 | | X-53=x-42-17 | | 8m+1=6m-5 | | -35=-7/9y | | 3v+3=-3(v+7) | | 4(y+1)=-7y-7 | | 8v-42=3(v+1) | | 5x−3=3(x+7)+3x | | 49+x=113 | | 0=-16t+160 | | (2/3)^2x+12=(27/8)^x | | x+.05x=300 | | (7p+4)=(9p-7) | | 4(8)–2y=28 | | 4(x+1)-7=2x+2(-2+x) | | a=15=-8 | | 11x^2-32x-78=0 | | 8=4+k | | 3(m-2)=2(m-2) | | (3q+2)^2=0 | | 6x2+10x+4=0 | | 110=6+1/2l |